Temescal

ARM Purification

CLICK HERE: free registration for Semiconductor Today and Semiconductor Today ASIACLICK HERE: free registration for Semiconductor Today and Semiconductor Today ASIA

Join our LinkedIn group!

Follow ST on Twitter

IQE

24 September 2015

US Energy Department awards $22m to develop wide-bandgap technology for large-scale motors

As part of the US Administration's effort to increase energy efficiency and double US energy productivity by 2030, the Energy Department is awarding $22m in funding for five projects aimed at merging wide-bandgap (WBG) semiconductor technology with advancements for large-scale motors to increase energy efficiency in high-energy-consuming industries, products and processes, such as the transportation of fossil fuels and industrial-scale compression systems.

Funded through the Next Generation Electric Machines funding opportunity, the projects could cut energy waste by as much as 30%. The projects also aim to reduce the size of megawatt-scale motors and drive systems used in the chemical and petroleum refining industries, natural gas infrastructure, and general industry compressor applications like HVAC (heating, ventilation and air conditioning) systems, refrigeration, and wastewater pumps by up to 50%.

"The industrial sector uses more than 30% of the energy consumed in the USA and is projected to use more, not less, energy over the next 25 years," says David Danielson, Assistant Secretary for Energy Efficiency and Renewable Energy. "Replacing less efficient industrial motor systems with more advanced, variable-speed direct-drive systems and incorporating recent power electronics advances, such as wide-bandgap semiconductors, could reduce industrial electricity consumption by 2-4%, leading to up to $2.7bn in annual energy savings, reducing up to 27 million tons of carbon emissions each year, and creating high-quality manufacturing jobs," he adds. 

The projects will leverage the work of the Department's Power America Institute on WBG semiconductors for power electronics by deploying WBG technology to drive large power, industrial and high-speed electric motors and systems. WBG components (for controlling or converting electrical energy into usable power) operate at higher temperatures, voltages, and frequencies than silicon-based technologies. They are more durable and reliable, and can eliminate up to 90% of the power losses in electricity conversion compared to current technologies. By focusing on their specific application for large-scale motors, manufacturers can significantly improve the efficiency and productivity of processes ranging from small-scale machining to large-scale refining, pumping and cooling, it is reckoned.

The projects being funded are as follows:

  • Calnetix Technologies will design, build and test a high-speed permanent magnet machine and a silicon carbide (SiC)-based variable-speed drive system using a 4160 volt medium-voltage (MV) input. The new medium-voltage motors are expected to achieve up to eight times the power density of similar traditional systems.
  • General Electric Company will develop and demonstrate a medium-voltage drive system using SiC semiconductors and a high-speed motor to reduce the system footprint and improve power density and efficiency. To achieve these targets, the program will focus on three technology areas: (i) SiC-based MV high-frequency drive, (ii) a high-speed motor, and (iii) advanced insulation systems.
  • Eaton Corp will develop and test an integrated 15kV SiC variable-speed drive and high-speed megawatt motor for gas compression applications. The new drive technology will operate at more than 99% efficiency and achieve 10 times the power density of competing drives, providing an integrated, highly efficient motor and drive system for natural gas applications.
  • Clemson University will develop a pre-commercial megawatt-class variable-speed drive based on new motor power converter technologies. The fully integrated prototype system will be made by TECO Westinghouse Motor Company in its Round Rock, TX facility and be demonstrated at Clemson's eGRID Center.
  • Ohio State University will design, test and demonstrate a high-performance, high-speed drive capable of integrating into electric grids while avoiding energy losses associated with power transformers. If successful, it is reckoned that the proposed project will significantly advance transformer-less drive technologies for a range of industries and motor applications.

This effort is part of the Energy Department's broader Clean Energy Manufacturing Initiative, which aims to increase American competitiveness in the production of clean energy products and to boost US manufacturing competitiveness by increasing energy productivity.

Tags: Power electronics SiC

Visit: www.energy.gov/eere/cemi/clean-energy-manufacturing-initiative

Share/Save/Bookmark
See Latest IssueRSS Feed

EVG